Density based clustering and error correction of metabarcodes in Nanopore sequencing using the novel bioinformatics algorithm ASHURE – Bilgenur Baloğlu

Presenter

Bilgenur Baloğlu

Bilgenur Baloglu earned her B.S. in molecular biology and genetics at Istanbul Technical University. She then earned her Ph.D. in Biological Sciences from National University of Singapore in 2018. Her thesis focused on the biological assessment of aquatic habitats using DNA sequencing technologies, which contributed to solving an ecological outbreak caused by aquatic insects as well as led to the discovery of nearly 350 insect species in a tropical swamp forest. Throughout her Ph.D., she provided consulting services to the National Water Agency of Singapore government. Dr. Baloglu worked as/is as postdoctoral researcher at the Centre for Biodiversity Genomics, University of Guelph in Canada, where she focused on developing new methods for DNA sequencing, Nanopore sequencing, and phylogenetics of sub-arctic insects. She is also coordinating a US EPA funded project on the Great Lakes DNA barcoding along with four collaborating universities in the USA.

Abstract

Metabarcoding (identification of the plant, animal, and fungal taxa present in an environmental sample) rapidly gains importance in ecology, food safety, pest identification, and disease surveillance. It has a compelling advantage over traditional approaches for obtaining data on species distributions, however, it is often difficult to detect all the species present in a bulk sample using High-throughput Sequencing (HTS). This can – in parts – be attributed to the shorter read lengths most HTS instruments generate. Moreover, most HTS platforms are not portable, making in situ field-based sequencing not feasible. Oxford Nanopore sequencing platforms such as the MinION represent an exception to that and they are also known to provide longer reads albeit limited by rather high error rates (~12-15%). We used a freshwater mock community of 50 Operational Taxonomic Units (OTU) to test the capacity of the Oxford Nanopore MinION coupled with a rolling circle amplification protocol to provide long read metabarcoding results. We also propose a new Python pipeline that explores error profiles of nanopore consensus sequences, mapping accuracy, and overall community representation within a complex bulk sample. Using our molecular and bioinformatics workflow, we were able to estimate the diversity of the tested freshwater mock community with an average sequence accuracy of >99% for 1D2 sequencing on the nanopore platform. We also showed that the high error rates associated with long-read single-molecule sequencing can be mitigated by using a rolling circle amplification protocol. Future bioassessment programs will tremendously benefit from such portable, highly accurate, species-level metabarcoding and it appears that we reached a point were cost-effective field-based DNA metabarcoding is possible.

Date: August 28th, 2020 – 3:00 pm (GMT+3)

Language: English

To register the webinar, you can visit this link:

https://www.bigmarker.com/bioinfonet/Density-based-clustering-and-error-correction-of-metabarcodes-in-Nanopore-sequencing-using-ASHURE

Leave a Reply

Your email address will not be published. Required fields are marked *

RSG-Turkey is a member of The International Society for Computational Biology (ISCB) Student Council (SC) Regional Student Groups (RSG). We are a non-profit community composed of early career researchers interested in computational biology and bioinformatics.

Contact: turkey.rsg@gmail.com

Follow us on social media!